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Abstract. The advent of multiagent systems has brought together many 
disciplines and given us a new way to look at intelligent, distributed systems.  
However, traditional ways of thinking about and designing software do not fit 
the multiagent paradigm.  This paper describes the Multiagent Systems 
Engineering (MaSE) methodology and agentTool, a tool to support MaSE.  
MaSE guides a designer from an initial system specification to implementation 
by guiding the designer through a set of inter-related graphically based system 
models.  The underlying formal syntax and semantics of clearly and 
unambiguously ties them together as envisioned by MaSE. 

1. Introduction 

The advent of multiagent systems has brought together many disciplines in an effort 
to build distributed, intelligent, and robust applications.  They have given us a new 
way to look at distributed systems and provided a path to more robust intelligent 
applications.  However, many of our traditional ways of thinking about and designing 
software do not fit the multiagent paradigm.  Over the past few years, there have been 
several attempts at creating tools and methodologies for building such systems.  
Unfortunately, many of the tools have focused on a single agent architecture [8, 11] or 
have not been adequately supported by an automated toolset [4, 14].  In our research, 
we have been developing both a complete-lifecycle methodology and a 
complimentary environment for analyzing, designing, and developing heterogeneous 
multiagent systems.  The methodology we are developing is called Multiagent 
Systems Engineering (MaSE) while the tool we are building to support that 
methodology is called agentTool. 

In this research, we view agents as a specialization of the objects. Instead of 
objects whose methods that can be invoked by other objects, agents coordinate their 
actions via conversations to accomplish individual and community goals.  
Interestingly, this viewpoint sidesteps the issues regarding what is or is not an agent.  
We view agents merely as a convenient abstraction, which may or may not possess 
intelligence.  In this way, we can handle intelligent and non-intelligent system 
components equally within the same framework.  This view also justifies our use 
object-oriented tools and techniques.  Since agents are specializations of objects, we 
can tailor general object-oriented methods and apply them to the specification and 
design of multiagent systems. 
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2. Multiagent Systems Engineering Methodology 

The general flow of MaSE follows the seven steps shown in Figure 1.   The rounded 
rectangles on the left side denote the models used in each step.  The goal of MaSE is 
to guide a system developer from an initial system specification to a multiagent 
system implementation.  This is done by directing the designer through this set of 
inter-related system models.  Although the majority of the MaSE models are 
graphical, the underlying semantics clearly and unambiguously defines specific 
relationships between the graphical models.   
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Fig. 1. MaSE Methodology 

MaSE is designed to be applied iteratively.  Under normal circumstances, we 
would expect a designer to move through each step multiple times, moving back and 
forth between models to ensure each model is complete and consistent.  While this is 
common practice using most design methodologies, MaSE was specifically designed 
to support this process by formally capturing the relationships between the models.  
By automating the MaSE models in our agentTool environment, these relationships 
can be captured and enforced thus supporting the designer’s ability to freely move 
between steps.  The result is consistency between the various MaSE models and a 
system design that satisfies all the original goals of the system.    
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MaSE, as well as agentTool, is independent of a particular multiagent system 
architecture, agent architecture, programming language, or communication 
framework.  Systems designed using MaSE can be implemented in a variety ways.  
For example, a system could be designed and implemented that included a 
heterogeneous mix of agent architectures using any one of a number of existing 
underlying communication frameworks. The ultimate goal of MaSE and agentTool is 
the automatic generation of code that is correct with respect to the original system 
specification. 

2.1.  Capturing Goals 

The first step in the MaSE methodology is Capturing Goals, which takes the initial 
system specification and transforms it into a structured set of system goals, depicted 
in a Goal Hierarchy Diagram, as shown in Figure 2.  In MaSE, a goal is always 
defined as a system-level objective.  Lower-level constructs may inherit or be 
responsible for goals, but goals always have a system-level context.  

1. Detect and notify
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violations.

1.1.3a/1.1.2a
Ensure the admin

receives notification.

1.1.1  Determine if
files have been

deleted or modified.

1.1.2  Detect user
attempts to modify

files.

1.1.3  Notify
administrator of
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1.2.2  Notify
administrator of
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1.1  Detect & notify
admin of system file

violations.

1.2  Detect and
notify administrator
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Fig. 2. Goal Hierarchy Diagram 

There are two steps to Capturing Goals: identifying the goals and structuring 
goals.  Goals are identified by distilling the essence of the set of requirements.  These 
requirements may include detailed technical documents, user stories, or formalized 
specifications.  Once these goals have been captured and explicitly stated, they are 
less likely to change than the detailed steps and activities involved in accomplishing 
them [6].  Next, the identified goals are analyzed and structured into a Goal Hierarchy 
Diagram.  In a Goal Hierarchy Diagram, goals are organized by importance.  Each 
level of the hierarchy contains goals that are roughly equal in scope and all sub-goals 
relate functionally to their parent.  Eventually, each goal will be associated with roles 
and agent classes that are responsible for satisfying that goal. 
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2.2.  Applying Use Cases 

The Applying Uses Cases step is a crucial step in translating goals into roles and 
associated tasks.  Use cases are drawn from the system requirements and are narrative 
descriptions of a sequence of events that define desired system behavior.  They are 
examples of how the system should behave in a given case.   

To help determine the actual communications required within a multiagent system, 
the use cases are restructured as Sequence Diagrams, as shown in Figure 3.  A 
Sequence Diagram depicts a sequence of events between multiple roles and, as a 
result, defines the minimum communication that must take place between roles.  The 
roles identified in this step form the initial set of roles used to fully define the system 
roles in the next step.  The events identified here are also used later to help define 
tasks and conversations since all events between roles will require a conversation 
between the agent classes if the roles are played by different agent classes.   

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

 

Fig. 3. Sequence Diagram 

2.3.  Refining Roles 

The third step in MaSE is to ensure we have identified all roles in the resulting system 
and to develop the tasks that define exactly what the roles will do.  Roles are 
identified from the Sequence Diagrams developed during the Applying Use Cases 
step as well as the system goals defined in Capturing Goals.  We ensure all system 
goals are accounted for by associating each goal with a specific role that is eventually 
played by at least one agent in the final design.  A role is an abstract description of an 
entity’s expected function and is similar to the notion of an actor in a play or an office 
within an organization [5].  Each goal is usually mapped to a single role.  However, 
there are many situations where it is useful to combine multiple goals in a single role 
for convenience or efficiency.  We base these decisions on standard software 
engineering concepts such as functional, communicational, procedural, or temporal 
cohesion.  Other factors include the natural distribution of resources or special 
interfacing issues.  Roles are captured in a Role Model as shown in Figure 4. 
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Fig. 4. Role Model 

Once roles have been defined, tasks are created.  A set of concurrent tasks provide 
a high-level description of what a role must do to satisfy its goals including how it 
interacts with other roles.  An example of a MaSE Concurrent Task Diagram, which 
captures a bidder’s behavior in a Contract Net Protocol, is shown in Figure 5. The 
syntax of a transition follows the notation shown below [2].  

trigger(args1) [ guard ] / transmission(args2) 

The statement is interpreted to say that if an event trigger is received with a 
number of arguments args1 and the condition guard holds, then the message 
transmission is sent with the set of arguments args2.  All items are optional.  For 
example, a transition with just a guard condition, [guard], is allowed, as well as one 
with a received message and a transmission, trigger / transmission.  Multiple 
transmission events are also allowed and are separated by semi-colons (;).  Actions 
may be performed in a state and are written as functions. 

idle

evaluate
t = setTimer(TIME) wait

prepareBid
c = costToPerform(task)

bid = acceptability(c, task)

receive(announce(task), ag)

[bid] send(bid(task, c), ag)

receive(acknowledge, ag)

receive(announce(task, cost), ag) [timeout(t)] 
/send(acknowledge, ag); start(task, ag)

[NOT bid]

receive(sorry(task), ag)

 

Fig. 5. MaSE Task 

2.4.  Creating Agent Classes 

In Creating Agent Classes, agent classes are identified from roles and documented in 
an Agent Class Diagram, as shown in Figure 6.  Agent Class Diagrams depict agent 
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classes as boxes and the conversations between them as lines connecting the agent 
classes.  As with goals and roles, we generally define a one-to-one mapping between 
roles, which are listed under the agent class name, and agent classes.  However, the 
designer may combine multiple roles in a single agent class or map a single role to 
multiple agent classes.  Since agents inherit the communication paths between roles, 
any paths between two roles become conversations between their respective classes.  
As such, it is often desirable to combine two roles that share a high volume of 
message traffic.  When determining which roles to combine, concepts such as 
cohesion and the volume of message traffic are important considerations.   

FileMonitor
FileDeletionDetector
FileModifiedDetector

LoginMonitor
LoginDetector

DetectNotify
FileNotifier

LoginNotifier

Notifier
AdminNotifier

User
User

Violation

RequestNotification

RequestNotification

Notify

 

Fig. 6. Agent Class Diagram 

2.5.  Constructing Conversations 

Constructing Conversations is the next step of MaSE, which is often performed 
almost in parallel with the succeeding step of Assembling Agents.  The two steps are 
closely linked as the agent architecture defined in Assembling Agents must 
implement the conversations and methods defined in Constructing Conversations.  A 
MaSE conversation defines a coordination protocol between two agents.  Specifically, 
a conversation consists of two Communication Class Diagrams, one each for the 
initiator and responder.  A Communication Class Diagram is a pair of finite state 
machines that define a conversation between two participant agent classes.  One side 
of a conversation is shown in Figure 7.   The initiator always begins the conversation 
by sending the first message.  The syntax for Communication Class Diagrams is very 
similar to that of Concurrent Task Diagrams.  The main difference between 
conversations and concurrent tasks is that concurrent tasks may include multiple 
conversations between many different roles and tasks whereas conversations are 
binary exchanges between individual agents. 
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2.6.  Assembling Agents 

In this step of MaSE, the internals of agent classes are created.  Robinson [13] 
describes the details of assembling agents from a set of standard or user-defined 
architectures.  This process is simplified by using an architectural modeling language 
that combines the abstract nature of traditional architectural description languages 
with the Object Constraint Language, which allows the designer to specify low-level 
details.  A current focus of our research is how to map tasks to conversations and 
internal agent architectures.  The actions specified in the tasks and conversations must 
be mapped to internal functions of the agent architecture.   

Validation
x = validateTask(t)

NewTask
id = createNewTask(t)

Resend

NewTask(t)

NewTask(t) [NOT X] ^ Invalid()

[X]

^ Accepted(id)

Cancel  

Fig. 7. Communication Class Diagram 

2.7.  System Deployment 

The final step of MaSE defines the configuration of the actual system to be 
implemented.  To date, we have only looked at static, non-mobile systems although 
we are currently investigating the specification and design of dynamic and mobile 
agent systems.  In MaSE, we define the overall system architecture using Deployment 
Diagrams to show the numbers, types, and locations of agents within a system as 
shown in Figure 8.   The three dimensional boxes denote individual agents while the 
lines connecting them represent actual conversations.  A dashed-line box indicates 
agents that are located on the same physical platform. 

The agents in a Deployment Diagram are actual instances of agent classes from the 
Agent Class Diagram.  Therefore, each agent class may have one or more instances in 
the Deployment Diagram.  Likewise, since the lines between agents indicate 
communications paths, they are derived from the possible conversations defined in 
the Agent Class Diagram as well.  However, just because an agent type or 
conversation is defined in the Agent Class Diagram, it does not necessarily have to 
appear in a Deployment Diagram. 

System Deployment is also where all previously undefined implementation 
decisions, such as programming language or communication framework, must be 
made.  While in a pure software engineering sense, we want to put off these decisions 
until this step, there will obviously be times when the decision are made early, 
perhaps even as part of the requirements.   
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Fig. 8. Deployment Diagram 

3. agentTool 

The agentTool system is our attempt to implement a tool to support and enforce 
MaSE.  Currently agentTool implements three of the seven steps of MaSE: Creating 
Agent Classes, Constructing Conversations, and Assembling Agent Classes.  We are 
currently adding support for the analysis phase.  

The agentTool user interface is shown in Figure 9.  The menus across the top allow 
access to several system functions, including a persistent knowledge base [12], 
conversation verification, and code generation.  The buttons on the left add specific 
items to the various diagrams while the text window below them displays system 
messages.  

MaSE diagrams are accessed via the tabbed panels across the top of the main 
window.  When a MaSE diagram is selected, the designer can manipulate it 
graphically in the window.  Each panel has different types of objects and text that can 
be placed on them.  Selecting an object in the window enables other related diagrams 
to become accessible.  For example, in Figure 9, two agents have been added with a 
conversation between them.  When the user selects the Advertise conversation (by 
clicking on the line), the Conv:Advertise Initiator and Conv:Advertise Responder 
tabbed panes become visible. The user may then access those diagrams by selecting 
the appropriate tab.  

The part of agentTool that is perhaps the most appealing is the ability to work on 
different pieces of the system and at various levels of abstraction interchangeably, 
which mirrors the ability of MaSE to incrementally add detail.  The “tabbed pane” 
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operation of agentTool implements this capability of MaSE since the step you are 
working on is always represented by the current diagram and the available tabs show 
how you might move up and down through the methodology. 

 

Fig. 9. Agent Class Diagram Panel 

It is easier to envision the potential of this capability by considering the 
implementation of the entire MaSE methodology in agentTool.  During each step of 
system development, the various analysis and design diagrams would be available 
through tabs on the main window.  The ordering of the tabs follows the MaSE steps, 
so selecting a tab to the left of the current pane would move “back” in the 
methodology while selecting a tab to the right would move “forward”.  The available 
diagrams (tabs) are controlled by the currently selected object.  The available 
diagrams include those that can be reached following valid MaSE steps.  For instance, 
by selecting a conversation, tabs for the associated Communication Class Diagrams 
become available while selecting an agent would cause a tab for the Agent 
Architecture Diagram to appear.  

3.1.  Building a Multiagent System using agentTool 

Constructing a multiagent system using agentTool begins in an Agent Class Diagram 
as shown above in Figure 9.  Since a conversation can only exist between agent 
classes, agent classes are generally added before conversations.  While we can add all 
the agent classes to the Agent Class Diagram before adding any conversations, we can 
also add “sections” of the system at a time, connecting appropriate agent classes with 
conversations, and then moving onto the next section.  Either method is supported and 
is generally a matter of personal choice. 
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3.2.  Constructing Conversations in agentTool 

Once we have defined agent classes and conversations, we can define the details of 
the conversations using Communication Class Diagrams.   The “Add State” button 
adds a state to the panel while the “Add Conversation” button adds a conversation 
between the two selected states.  A conversation can be verified at any point during its 
creation by using the Verify Conversations command from the Command menu [9].  
The agentTool verification process ensures conversation specifications are deadlock 
free.  If any errors exist, the verification results in a highlighted piece or pieces of a 
conversation, as shown in Figure 10 on the “Ack” transition (highlights are yellow in 
the application).  Each highlight indicates a potential error as detected by the 
verification routine. 

 

Fig. 10. agentTool Conversation Error 

3.3.  Assembling Agent Class Components in agentTool 

Agent classes in agentTool have internal components that can be added, removed, and 
manipulated in a manner similar to the other panels of agentTool.  Agent classes do 
have an added layer of complexity however, since all of their components can have 
Component State Diagrams associated with them and additional sub-components 
beneath them.  The agent class components shown in Figure 11 are the details of the 
“User” agent class from Figure 9.  

Details can also be added to lower levels of abstraction.  In Figure 11, the 
Component Stat Diag and MessageInterface Architecture tabs lead to a Component 
State Diagram and Sub-Architecture Diagram respectively.  The Component State 
Diagram defines the dynamic behavior of the component while the Sub-Architecture 
Diagram contains additional components and connector that further define the 
component. 
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Fig. 11. agentTool Agent Class Components 

4. Underlying agentTool Formalisms 

The formal semantics of MaSE are reflected in the transformations from one 
abstraction to the next.  For example, agents play roles that capture goals and 
conversations have exactly two participants.  These semantics are both incorporated 
and enforced by agentTool.  In a future version of agentTool that incorporates the 
entire MaSE methodology, a role could be mapped “backward” to the set of goals 
from which it was created or “forward” to the agent class that plays it. 

The agentTool system is based on an object hierarchy that mimics the objects in 
MaSE.  The current agentTool object model is shown in Figure 12.  In agentTool, 
each System is composed of a set of Agents and Conversations.  As described above 
each Agent may have an Architecture, which is composed of Components and 
Connectors.  Likewise, a Conversation is composed of two State Tables, which 
consist of a set of States and Transitions.  Since the internal object model of 
agentTool only allows the configurations permitted by MaSE, we claim that it 
formally enforces the MaSE diagram structure and interrelationships. 

Since we do not currently have MaSE entirely implemented in agentTool, it is 
difficult to see how the diagrams from different parts of the methodology are tied 
together.  In our current work, we are extending the agentTool object model to 
incorporate Goals, Roles, and Tasks.  Figure 13 shows this extension to the object 
model.  In the new object model an Agent plays at least one Role, which consists of 
one or more Tasks.  Likewise, all Roles must be played by at least one Agent.  Each 
Role also captures one or more Goals and each Goal is captured by exactly one Role.  
This object model makes it easy to see that if the user selects a particular agent, it is 
not difficult to determine exactly what Roles, Tasks, Goals, and Conversations may 
be affected by any changes to that Agent.  What may be even more important is that 
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the user can select a Goal and easily determine what Roles, Tasks, Agents, and 
Conversations might be affected by changes to the goal.   
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Fig. 12. Current MaSE Object Model 
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Fig. 13. Extended MaSE Object Model 
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5. Related Work 

There have been several proposed methodologies for analyzing, designing, and 
building multiagent systems [4].  The majority of these are based on existing object-
oriented or knowledge-based methodologies.  The most widely published 
methodology is Gaia methodology [14], which we will use for comparison.   

While Gaia and MaSE take a similar approach in analyzing multiagent system, 
MaSE is more detailed and provides more guidance to system designer. The first step 
in Gaia is to extract roles from the problem specification without real guidance on 
how this is done.  MaSE, on the other hand, develops Goal Hierarchy and Use Cases 
to help define what roles should be developed.   

The use of roles by both methodologies is similar.  It is used to abstractly define 
the basic components within the system.  In Gaia, roles define functionality in terms 
responsibilities.  In MaSE, similar functionality is defined in Concurrent Task 
Diagram; however, concurrent tasks provide communication detail not found in Gaia.  
Gaia permissions define the use of resources by a particular role, which is not yet 
defined in MaSE. 

Gaia uses activities to model computations performed within roles and protocols to 
define interactions with other roles.  These are captured with MaSE tasks, which once 
again provide significantly more detail on when actions are performed, the 
information input and output from the actions, and how the actions relate to the 
interaction protocols. 

In the design phase, Gaia only provides a high-level design.  It consists of an Agent 
Model, which identifies the agent types (and the roles from which they were derived) 
and their multiplicity within the system.  This information is captured in MaSE Agent 
Class Diagrams and Deployment Diagrams. 

The Gaia Services Model identifies the main services of the agent type in terms of 
the inputs, outputs, pre- and post-conditions.  This does not have a direct parallel in 
MaSE although services and the details of the interactions (inputs and outputs) are 
defined in MaSE tasks and conversations.   

Finally, the Gaia acquaintance model identifies lines of communications between 
agent types.  In MaSE, this information is captured in the Agent Class Diagram, 
which also identifies the types of interactions as individual conversations.   

6. Future Work 

As stated throughout this paper, MaSE and agentTool are works in progress.  We are 
currently extending MaSE to handle mobility and dynamic systems (in terms of 
agents being able to enter and leave the system during execution).  We are also 
looking more closely at the relationship between tasks, conversations, and the internal 
design of agents.  As for agentTool, we are extending it to handle all aspects of MaSE 
including code generation.  We currently have a code generator that generates 
complete conversations for a single communication framework.  We are also working 
on integrating agentTool with the AFIT Wide Spectrum Object Modeling 
Environment that is looking at the more general code generation problem. 
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7. Conclusions 

The Multiagent Systems Engineering methodology is a seven-step process that guides 
a designer in transforming a set of requirements into a successively more concrete 
sequence of models.  By analyzing the system as a set of roles and tasks, a system 
designer is naturally lead to the definition of autonomous, pro-active agents that 
coordinate their actions to solve the overall system goals.   

MaSE begins in the analysis phase by capturing the essence of an initial system 
context in a structured set of goals.  Next, a set of use cases are captured and 
transformed into Sequence Diagrams so desired event sequences will be designed into 
the system.  Finally, the goals are combined to form roles, which include tasks that 
describe how roles satisfy their associated goals.  In the design phase, roles are 
combined to define agent classes and tasks and Sequence Diagrams are used to 
identify conversations between the classes.  To complete the agent design, the internal 
agent architecture is chosen and actions are mapped to functions in the architecture.  
Finally, the run-time structure of the system is defined in a Deployment Diagram and 
implementation choices such as language and communication framework are made. 

MaSE, and our current version of agentTool, has been used to develop 5 to 10 
small to medium sized multiagent systems ranging from information systems [7, 10] 
and mixed-initiative distributed planners [1] to biologically based immune systems 
[3].  The results have been promising.  Users tell us that following MaSE is relatively 
simple, yet is flexible enough to allow for a variety of solutions.  We are currently 
using MaSE and agentTool to develop larger scale multiagent systems that are both 
mobile and dynamic in nature.   

From our research on MaSE and agentTool, we have learned many lessons.  First, 
it is clear that developing a methodology with an eye towards automation and 
formally defined relationships between the various models simplifies the semantics 
and makes implementation much easier.  Secondly, using object-oriented principles as 
a basis for our methodology was the right choice.  We consider MaSE a domain 
specific instance of the more general object-oriented paradigm.  This also simplifies 
the underlying formal model and simplifies code generation.  Instead of dealing with 
a general association, we have just one – a conversation between agents.  While 
agents are not equivalent to an object, they are a specialization.  Once again, we can 
focus our methodology and tool thus making the entire process less complex.  Finally, 
we have shown that you can develop a methodology and tool to support multiple 
types of agent architectures, languages, and communications frameworks.   
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